T.C.
MİLLİ EĞİTİM BAKANLIĞI

GİDA TEKNOLOJİSİ

GİDA MUHAFAZA İLKELERİ 1
541GI0004

Ankara, 2011
Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya yönelik olarak öğrencilere rehberlik etmek amacıyla hazırlanmış bir bireysel öğrenme materyalidir.

- Milli Eğitim Bakanlığına ücretsiz olarak verilmiştir.
- PARA İLE SATILMAZ.
AÇIKLAMALAR

<table>
<thead>
<tr>
<th>KOD</th>
<th>541GI0004</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALAN</td>
<td>Gıda Teknolojisi</td>
</tr>
<tr>
<td>DAL/MESLEK</td>
<td>Alan Ortak</td>
</tr>
<tr>
<td>MODÜLÜN ADI</td>
<td>Gıda Muhafaza İlkeleri 1</td>
</tr>
<tr>
<td>MODÜLÜN TANIMI</td>
<td>Bu modül mikrobiyal bulaşma kaynakları ve sanitasyon kurallarını uygulayarak kontaminasyonu önleyebilme bilgilerinin verildiği öğrenme materyalidir.</td>
</tr>
<tr>
<td>SÜRE</td>
<td>40/24</td>
</tr>
<tr>
<td>ÖN KOŞUL</td>
<td>Genel Mikrobiyoloji modülünü başarmak</td>
</tr>
<tr>
<td>YETERLİK</td>
<td>Gidaları muhafaza ilkelerini incelemek</td>
</tr>
</tbody>
</table>

MODÜLÜN AMACI

Genel Amaç
Bu modül ile gerekli bilgileri alıp uygun araç gereç ve ekipman sağlandığında mikrobiyal bulaşma kaynaklarını inceleyip sanitasyon kurallarını uygulayarak kontaminasyonu önleyebileceksiniz.

Amaçlar
1. Bilimsel yöntemlere uygun olarak mikrobiyal bulaşma kaynaklarını inceleyebileceksiniz.
2. Sanitasyon kurallarını uygulayarak kontaminasyonu önleyebileceksiniz.

EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI

DVD, projeksiyon, tepegöz, sınıf tahtası, öğrencinin kendi kendi ve grupla çalışabileceği ortamlar (kütüphane, internet vb.), kağıt, kalem, laboratuvar, hazır besiyeri, su, inkübatör, pipet, üretim atölyesi, koruyucu malzemeler, temizlik ve dezenfeksiyon madde ve malzemeleri

ÖLÇME VE DEĞERLENDİRME

Modül içinde yer alan her öğrenme faaliyetinden sonra verilen ölçme araçları ile kendinizi değerlendirireceksiniz. Öğretmen modül sonunda ölçme aracı (coğraş şekmeli test, doğru-yanlış testi, boşluk doldurma, eşleştirme vb.) kullanarak modül uygulamalari ile kazandığınız bilgi ve becerileri ölçerek sizi değerlendirirecektir.
Sevgili Öğrenci,

Dünyada üretilen gıdaların yaklaşık %25’i mikroorganizmaların etkisi ile duyusal, fiziksel, enzimatik ve kimyasal değişimlere uğrayarak bozulmaktadır.

Gıdaların bozulmasına neden olan bu değişimler, kontrol altında alınarak bozulma tamamen veya kısmen engellenebilir. Bu sayede bozulma sebepleri ortadan kaldırılırken aynı zamanda gıdanın besin değeri, renk, aroma ve fiziksel yapısına ait duyusal nitelikleri yanı kalitesi de korunmuş olur.

Bu modül ile gıdalarında mikrobiyolojik bozulmaları etkileyen faktörleri, bulaşma kaynaklarını, gıda zehirlenmelerini, gıdalarında mikrobiyal faaliyetleri ve kontaminasyonun önlenmesini öğreneceksiniz.
AMAÇ

Bilimsel yöntemlere uygun olarak mikrobiyal bulaşma kaynaklarını inceleyebileceksiniz.

ARAŞTIRMA

- Çalışma grupları oluşturararak çeşitli gıda işletmelerinde alınan hijyen ve sanitasyon tedbirlerini araştırınız ve rapor hazırlayınız.
- Mikrobiyal bulaşma kaynaklarınızı araştırarak rapor hazırlayınız.
- Hazırladığınız raporları sınıfta arkadaşlarınız ile paylaşınız.

1. GİDA VE MİKROORGANİZMALAR

1.1. Gıdalarda Mikrobiyal Aktivite

Doğada mikroorganizmalar, bitki ve hayvanlar arasında doğal ve sürekli bir etkileşim vardır. Mikroorganizmalar insan gıdasını oluşturan bitkisel ve hayvansal kaynaklı gıda maddelerini kullanarak varlıklarını sürdürür.

Gıdalardaki içerikte proteinler, yağlar, karbonhidratlar, vitaminler, mineraller ve diğer değişimli besin öğeleri bulunur. Bu besin öğeleri nedeniyle gıdalardan çoğu mikrobiyal gelişime için mükemmel bir ortam oluşturur.

Mikroorganizmaların enzimatik faaliyetleri sonucu çeşitli besin maddelerinin yıkımı ve yeni metabolitlerin üretimi, gıdalarda arzu edilmeyen tat ve koku oluşumuna neden olur.

Mikroorganizmaların asıl işlevi, kendi nesillerini ve yaşamlarını devam ettirmektir. Bu amaci gerçekleştirme için aşağıdaki temel reaksiyonu yürütürler.

Tüm organik bileşikler → Hücre yapıları + Enerji + İnorganik bileşikler

Gıdalarda bulunan mikroorganizmalar aktivitelerine göre başlıca üç grupta toplanabilir:

- Gıdalarda bozulmaya neden olan saprofit mikroorganizmalar
- İnsanlarda gıda zehirlenmesi ve enfeksiyona neden olan patojen mikroorganizmalar
Fermente et, süt, sebze-meyve ürünleri ile bira, şarap gibi alkollü içeceklerin üretiminde rol oynayan yararlı mikroorganizmalar

Herhangi bir gıdada patojen mikroorganizma bulunması halk sağlığı açısından risk oluşturur.

İnsan sağlığının korunması açısından patojen mikroorganizmaların gidaya bulaşmasını ve gelişmesinin önlenmesi veya uygun gıda işleme yöntemiyle etkisiz hâle getirilmeleri zorunludur.

Gıdalarda bozulmayı genel olarak gıdanın yapısında bulunan çeşitli besin öğeleriyle (protein, karbonhidrat, yağlar) bazı bileşiklerin (organik asitler, alkoller, aldehitler, selüloz ve pektin) yıkım ugratılması sonucu gıdada tüketici tarafından istenmeyen bir görünüş, doku, tat ve kokunun ortaya çıkması olarak tanımlayabiliriz.

Gıdalarda bozulma nedenleri aşağıdaki kilerden biri olabilir:

- Bakteri, küf ve mayaların aktivitesi ve çoğalması
- Çeşitli kimyasal reaksiyonlar
- Gıdalarda doğal olarak bulunan enzimlerin aktivitesi
- Çeşitli böceklerden kaynaklanan zararlar
- Donma, yanma, kuruma ve basınç gibi etkiler sonucu oluşan değişimler

1.2. Gıdalarda Mikrobiyel Gelişmenin Etkileyen Faktörler

Mikroorganizmalar gıdada olumu veya olumsuz pek çok değişime neden olur.

Gıdalarda gelişen patojen mikroorganizmalar veya bunların toksik metabolitleri ise gıdaların tüketimine bağlı olarak insanda önemli sağlık sorunlarına neden olabilir.

Mikroorganizmaların gıdada gelişmesi; gıdanın sahip olduğu karakteristik özelliklere, gıdada bulunan mikroorganizmalar arası etkileşime, gıdanın içinde bulunduğu çevre koşullarına bağlı olarak değişmektedir.

Gıdalarda mikrobiyel gelişmenin etkileyen faktörler iç ve dış faktörler olmak üzere iki grupta incelenir.

1.2.1. İç Faktörler

Gıdalarda mikrobiyel gelişmenin etkileyen iç faktörler:

- pH

Mikroorganizmaların gelişimini ve aktivitesini belirleyen önemli faktörlerden biri pH’dir. Mikroorganizmaların büyük kısmı pH 6,6–7,5 arasında gelişmektedir.
Mikroorganizmaların minimum ve maksimum pH değerleri ile ilgili olarak belirtilen rakamlar tabloda verilmiştir (Tablo 1.1).

<table>
<thead>
<tr>
<th>Mikroorganizma</th>
<th>Minimum</th>
<th>Optimum</th>
<th>Maksimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakteri</td>
<td>4,5</td>
<td>6,5 – 7,5</td>
<td>9,0</td>
</tr>
<tr>
<td>Küf</td>
<td>1,5 – 3,5</td>
<td>4,5 – 6,8</td>
<td>9,0 – 11,0</td>
</tr>
<tr>
<td>Maya</td>
<td>1,5 – 3,5</td>
<td>4,0 – 6,8</td>
<td>8,0 – 8,5</td>
</tr>
</tbody>
</table>

Tablo 1.1: Mikroorganizmaların gelişebildikleri yaklaşık pH değerleri

Bu değerleri kesin sınırlar olarak kabul etmek hatalı olur. Çünkü gerçek değerler, diğer gelişme faktörlerinin etkilerine bağlı olarak değişebilir. Örneğin, bazı laktobasillerin gelişebildikleri sınırlar kullanılan aside bağlı olarak değişir. Sitrik, fosforik ve tartarik asitler, asetik ve laktik aside göre daha düşük pH'da gelişmeyi sağlar.

- Meyvelerde genel olarak mikrobiyal bozulmaya pH 3,5 altında gelişmeleri sonucunda maya ve küfler neden olur.
- Et ve deniz ürünlerinin pH’si 5,6 ve daha yüksek olduğundan bu gıdalarda küf ve mayalar kadar bakteriler de bozulmaya neden olmaktadır.
- Sebzelerin de pH’si meyvelerden daha yüksektir bu nedenle sebzelerde bakteriyel bozulma söz konusudur (Tablo 1.2).

Bazı gıdalarda asitliğin doğal olarak bulunmasına karşın bazılarda asitlik mikroorganizmaların faaliyeti sonucunda oluşur. Fermente süt ürünleri ve turşularda görülen bu durumda asitin kaynağı ne olursa olsun gıdalarnın dayanma süreleri üzerindeki etkisi aynıdır.

<table>
<thead>
<tr>
<th>Ürün</th>
<th>pH</th>
<th>Ürün</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Şeker</td>
<td>4,6-6,5</td>
<td>Darek</td>
<td>5,1-6,2</td>
</tr>
<tr>
<td>Paşabağ</td>
<td>4,5</td>
<td>Tavuk</td>
<td>5,5-6,4</td>
</tr>
<tr>
<td>Mass (tata)</td>
<td>5,9-6,5</td>
<td>Baklava</td>
<td>6,6-6,8</td>
</tr>
<tr>
<td>Donates</td>
<td>3,7-4,9</td>
<td>Baklava</td>
<td>6,6-6,8</td>
</tr>
<tr>
<td>Havuç</td>
<td>4,9-6,0</td>
<td>Mühür</td>
<td>4,5-5,2</td>
</tr>
<tr>
<td>Soğan</td>
<td>5,5-5,8</td>
<td>Tavşanlı</td>
<td>5,2-6,1</td>
</tr>
<tr>
<td>Meyveler</td>
<td></td>
<td>Süt ve Süt ürünleri</td>
<td></td>
</tr>
<tr>
<td>Ekmek</td>
<td>29,4-3,5</td>
<td>Süt</td>
<td>8,5-8,8</td>
</tr>
<tr>
<td>İnek</td>
<td>4,6</td>
<td>Yeşil</td>
<td>3,8-4,1</td>
</tr>
<tr>
<td>Muz</td>
<td>4,5-5,7</td>
<td>Poşar</td>
<td>4,9-6,1</td>
</tr>
<tr>
<td>Karpuz</td>
<td>5,2-5,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ürün</td>
<td>5,4-6,5</td>
<td>Viskusta</td>
<td></td>
</tr>
<tr>
<td>Postobal</td>
<td>28,4-0</td>
<td>Ağaç</td>
<td>7.6-9,3</td>
</tr>
</tbody>
</table>

Tablo 1.2: Bazı gıdaların pH değerleri

- Su aktivitesi
Gıda maddelerinin korunmasında kullanılan en eski yöntemlerden biri kurutma'dır. Bu yöntem ile gıdaların korunmasındaki temel prensip “gıdadaki suyun uçurularak veya başka bir maddeye bağlanarak onszu gelişmeyen mikroorganizmaların çalışmalarının engellenmesidir”.

Mikroorganizmaların su gereksinimlerinin çevrenin su aktivitesi (a_w) cinsinden ifade edilmesi bütün dünyada kabul edilmiş bir yöntemdir. Su aktivitesi, gıda maddesinin su buharı basıncının aynı sıcaklıklı saf suyun su buharı basıncına oranı olarak tarif edilir.

Taze ve işlem görmemiş meyve, sebze, et, tavuk ve balık gibi gıdaların su aktivitesi 0,98–0,99 dolayıdardır.

Bazı gıdaların su aktivite değerleri (Tablo 1.3)’te görüldüğü gibidir.

<table>
<thead>
<tr>
<th>Gıdalar</th>
<th>Su aktivitesi (a_w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pişirilmiş sosisler, ekmek</td>
<td>1.0 - 0.95</td>
</tr>
<tr>
<td>taze etler, taze sebze ve meyveler</td>
<td></td>
</tr>
<tr>
<td>tavuk, balkık, peynirler</td>
<td></td>
</tr>
<tr>
<td>Salam, olgun peynir, kekler</td>
<td>0.95 - 0.87</td>
</tr>
<tr>
<td>Un, pıroç, baklagil, şekerle koyulaştırılmış ürünler</td>
<td>0.87 - 0.80</td>
</tr>
<tr>
<td>Reçel ve marmelatlar, bazı kurutulmuş meyveler</td>
<td>0.80 – 0.75</td>
</tr>
<tr>
<td>Hububat</td>
<td>0.75 – 0.65</td>
</tr>
<tr>
<td>Kuru meyveler, şekerlemeler</td>
<td>0.65 – 0.60</td>
</tr>
<tr>
<td>Makarna, baharatlar</td>
<td>0.50 – 0.40</td>
</tr>
<tr>
<td>Yumurta tozu</td>
<td>0.40</td>
</tr>
<tr>
<td>Bisküvi, kırmızı ekmek</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Tablo 1.3: Bazı gıdaların yaklaşık su aktivitesi değerleri

Su içeriğinin kontrolü ile gıdaların korunması en eski yöntemlerden biridir. Herhangi bir ortamda su, bağlı ve serbest hâlde olmak üzere iki şekilde bulunur. Ortamın su aktivitelerini tayin eden serbest su olduğu için bu su, mikroorganizmalar tarafından yarıyışız bir hâle getirildiği zaman gerekli olan korunma işlemi yerine getirilmiş olur. Bunun için:

- Ortamda suyun içinde çözünmemiş olan şeker ve tuz gibi maddelerin yoğunluklarının artırılması kurutma işlemi ile aynı etkiye ulaşır.

Ortadaki su, bu hâlinde kristalleştiği takdirde yine organizma hücrelerince kullanılamaz hâle gelir.

Oksidasyon-redüksiyon potansiyeli

Mikroorganizmaların gelişme ortamlarının (gida, besiyeri vb.) kendilerine özgü bir oksidasyon-redüksiyon potansiyeli (O/R, Eh) vardır. Oksidasyon-redüksiyon elektriksel bir olaydır ve elektron transferi üzerine dayanır.

Oksidasyon (elektron kaybı) ve redüksiyon (elektron kazanma) genellikle birlikte cereyan ederler. Bir element veya bileşik elektron kaybettiğinin zaman ortam yükseltgenir (oksidasyon), elektronları kazanan ortam ise indirgenir (redüksiyon). Örneğin;

\[
\begin{align*}
\text{Cu}^0 & \xleftarrow{\text{Oksidasyon}} \text{Cu}^{+2} + 2e^- \\
\text{Redüksiyon} & \rightarrow
\end{align*}
\]

Bir maddenin elektron kaybetmesi veya kazanmasını genel olarak H iyonlarını kaybetme veya kazanma şeklinde olmaktadır. Bu nedenle de O/R potansiyeli, H kaybetme veya kazanma şeklinde de açıklanmaktadır.

Bu yükseltgenme ve indirgenme reaksiyonlarını gerçekleştiren potansiyel fark mV (milivolt) olarak ölçülür. Bu potansiyel fark, aynı zamanda O/R potansiyeli olarak tanımlanır ve Eh ile sembolize edilmektedir. Genel olarak bir ortamın Eh’si pH metreye takılan bir platin elektrot ile ölçülebilir.

Gıdaların Eh değerleri genel olarak +400 mV ile -400 mV arasında değişmektedir. Eğer ortamda oksijen varsa Eh değeri yüksektir. Bu durumda ortamda bulunan çeşitli mikroorganizmaların üremeesi söz konusudur. Düşük Eh değerinde, ortamda az oksijen vardır ve bakterilerin çoğalmaları azdır.

Örneğin; özellikle pseudomonas türe bakteriler, küfler ve mantarlar çoğalmaları için oksijene gereksinim duyar. Bu mikroorganizmaların çoğalması gıda maddelerinin vakumlu paketlenmesiyle büyük ölçüde önlenir.

Fakultatif anaerob mikroorganizmaların çoğalmaları büyük ölçüde Eh değerine bağlıdır. Özellikle clostridiumlar üremeleri için düşük Eh değerine gereksinim gösterir. Yani oksijensiz ortamda yaşar.

Düşük Eh değerinde daha az türdeki mikroorganizmalar yaşamalarını sürdürdüklerinden bu tür gıda maddelerinin dayanma süreleri de daha uzun olur.

Gıda maddelerinin saklanmasında oksijenin etkisini azaltmak için azot veya karbendioksit gazi da kullanılmaktadır.

Besin maddeleri
Mikroorganizmalar, yaşamlarını sürdürmek ve çoğalmak için su, karbon ve enerji kaynağı, azot kaynağı, vitaminler ve minerallere gereksinim duyar.

Suyun mikroorganizma gelişimi ve aktivitesi daha önce anlatılmıştı. Besin maddeleri gereksinimini açısından bir sıralama yapıldığında en düşük besin maddesi gereksinimini küfler göstermekte, bunu sırasıyla mayalar, gram (-) bakteriler ve gram (+) bakteriler izlemektedir.

Gıda kaynaklı mikroorganizmalar karbon ve enerji kaynağı olarak:

- Şekerleri
- Alkolleri
- Aminoasitleri
- Yağ asitlerini vb. kullanır.

- Antimikrobik bileşikler

Bazı gıdaların yapısında mikroorganizmaların gelişmesini belirli ölçülerde engelleyebilen, antimikrobiyal aktiviteye sahip doğal maddeler (inhibitörler) bulunur. Örneğin; taze sütte antimikrobik özellikleri saptanmış laktenin ve antikoliform faktörü olarak bilinen iki bileşik bulunmaktadır. Ayrıca çiğ sütlerdeki laktoperoxisidaz kompleksbazı streptokoklara karşı etkindir.

Yumurta akında bulunan lizozim enzimi, gram (+) bakterilere karşı etkili olur. Yine akta bulunan avidin, biotini bağlayarak mikroorganizmaların yararlanmasını engellerken konalbümin ise demirle birleşerek bakterilerin gelişmesine engel olur.

Ayrıca bazı mikroorganizmalar, gıdalarında antimikrobiyal aktiviteye sahip inhibitörler üreterek diğer mikroorganizmaların gelişmesine engel olur.

Bunların dışında gıdalarla koruyucu olarak sonradan eklenen bazı katkı maddeleri ile gıdalarındaki antibiyotik, pestisit, deterjan ve dezenfektan maddelerin kalıntıları da mikroorganizmalar üzerinde inhibitör etkiye sahiptir.
Biyolojik yaplar

Bazı gıdalarında mikroorganizmaların gıdaya girişi ve buna bağlı olarak da bozulmasını engelleyen doğal koruyucu biyolojik yapılar vardır.

Bunlar sebze ve meyvelerdeki kabuk, yumurtanın kabuğu, fındık ve badem derinin dış kabuğu, hayvanların deri ve postlar gibi yapılar.

Koruyucu biyolojik yapılarla en küçük bir çatlak, berelenme veya kıvrık oluşması ya da yapıdaki bütünlüğün bozulması mikroorganizmaların iç dokulara geçişine ve böylece bozulmalara neden olacaktır.

1.2.2. Dış Faktörler

Dış faktörleri, gıdaların depolandığı veya saklandığı çevrenin koşulları oluşturur. Bu faktörler mikroorganizmaların yanı sıra gıdanın doğal yapısının korunması açısından da önem taşır. Bu faktörler;

- Depolama sıcaklığı,
- Çevrenin bağlı nemı,
- Çevrede bulunan gazlar ve konsantrasyonlardır.

Depolama sıcaklığı

Sıcaklık mikrobiyal gelişmeyi etkileyen en önemli faktörlerden biridir. Bir mikroorganizmanın gelişebildiği en düşük sıcaklık -34°C, en yüksek sıcaklık ise 100°C’dir.

Her mikroorganizmanın gelişebildiği minimum, optimum ve maksimum sıcaklık değerleri vardır. Bu sıcaklık değerlerini “Genel Mikrobiyoloji Modülü”nde açıklanmıştır (Bakınız.1.4. Bakterilerin Gelişimine Etki Eden Faktörler).

- **Soğuk seven (psikrofil) bakteriler** buz dolabı sıcaklığında gelişir, bu sıcaklıkta saklanan et, balık, kanatlı etleri, yumurta, süt ve süt ürünlerinin bozulmasına neden olur. Bu bakteri cinsleri arasında pseudomonas, alcaligenes, lactobacillus, ve micrococcus sayılabilir.
- **Sıcak seven (termofilik) bakterilerin** çoğu bacillus ve clostridium cinsleri içinde yer alır. Bu bakteriler aynı zamanda ısıya dirençli spor oluştururlar nedeniyle özellikle konserve sanayinde çok önemlidir.
- **Küftler**, bakterilerden daha geniş sıcaklık aralıklarında gelişebilir. aspergillus, cladosporium gibi pek çok küf buz dolabı sıcaklığında yumurta, et, meyve ve sebzelerin yüzeyinde gelişebilme yeteneğini de vahsetmiştir.
- **Mayalar** ise psikrofil ve mezofilik sıcaklıklarında gelişebildikleri hâlde termofilik sıcaklıklarda genellikle gelişme göstermez.
Mikroorganizmaların gelişebildikleri sıcaklık derecelerinin bilinmesi gıdaların depolanması sırasında seçilir depo sıcaklıklarını hakkında bilgi verir.

Depolama sıcaklığının seçiminde yalnızca mikroorganizma faaliyetlerini dikkate almak hatalıdır. Gıda maddelerinin mikrobiyolojik bozulmadan korunmasının yanı sıra istenilen kalitede kalmasını sağlayabilme için depolama sırasında oluşacak mikrobiyolojik olmayan diğer kalite bozucu değişiklikleri de göz önünde almak gereklidir.

Her gıdanın kalitesini bozmadan saklanabileceğini sıcaklık derecesi farklıdır. Örneğin, muz 13–17°C'de depolanırken, 5-7oC'de depolanmasına oranla çok daha uzun süre kalitesini korur. Sebzelerin birçok için en uygun sıcaklık derecesi 10oC civarındadır.

Tüm bunlara karşın depolama sıcaklığının başarısı, depolamanın yapıldığı ortamın bağlı nemi ile CO2 ve O2 gibi gazların bulunup bulunmamasına bağlıdır.

- **Çevrenin bağlı nemi**

Gıdaların depolandığı çevrenin bağlı nemi hem gıdanın su aktivitesi hem de yüzeyde mikroorganizma gelişimi açısından önemlidir.

Nem geçirme yapan bir ambalaj malzemesiyle ambalajlanmış bir gıdanın depolama süresince su kaybetmesi, kuruması veya su tutarak nemlenmesi;

- Çevrenin bağlı nemine
- Gıdannın su aktivitesine
- Depolama sıcaklığına bağlı olarak değişir.

Örneğin; kuru gıdalar bağlı nemi yüksek ortamlarda depolanırsa nem miktarı dengeye ulaşanca kadar çevreden su alır. Bunun sonucunda da gıdanın yüzeyi veya yüzeyin hemen altında mikrobiyal bozulmaları uygun bir su aktivitesi degerine ulaşılır.

Yüksek su aktivitesine sahip gıdalar bağlı nemi düşük bir ortamda depolanında nem kaybederek gıdanın yüzeysel kurumaya bağlı olarak istenmeyen büzümler ve değişiklikler oluşur.

Depolama koşullarının belirlenmesinde ortamın bağlı nemi ve ortam sıcaklığı arasında dikkat edilmesi gereken bir ilişki vardır. Genel olarak **ortam sıcaklığı arttıkça bağlı nem azalır. Ortam sıcaklığı azaldığında ise bağlı nem değil olarak artar.**

Gıda maddelerinin ambalajlanarak depolanması hem gıdanın hem de çevrenin bağlı nemini etkileyen önemli faktördür. Ayrıca mikroorganizmaların gelişimini de etkiler.

Gıdaların depolanması için uygun bağlı nem seçilirken hem mikroorganizmaların hem de gıdanın arzuulan kalitesinin korunması hedeflenmelidir.
Çevrede bulunan gazlar ve yoğunluğu

Gıdalardan saklandığı depolara veya ambalaj malzemesi içine çeşitli gazlar verilerek gıdardaki mikrobiyel bozulma geciktirilmeye ve gıdaların raf ömrü uzatılmaya çalışılmaktadır.

Gıda maddelerinin yaklaşık olarak %10 oranında CO₂ içeren atmosferde depolama teknigiine kontrollü atmosfer (KA) veya modifiye atmosfer (MA) depolaması adı verilir.

Kontrollü atmosfer bitkisel yapıların muhabazasında uzun yıllardan beri kullanılmaktadır. Özellikle elma ve armut gibi meyvelerle etlerin depolanmasında kullanılmaktadır.

Karbondioksitin meyvelerde çeşitli fungusların (maya ve küf) neden olduğu fungal çürümeyi geciktirdiği bilinmektedir.

Depolama ortamına ozon ilavesinin gıdalarda koruyucu etki yaptığı bilinmektedir. Ozon gazının birkaç ppm düzeyde kullanımının bozulma etmeni mikroorganizmaları karşı etkili olduğu belirlemiştir. Ancak bu gaz kuvvetli oksidandır (yükseltgeyici) ve yüksek yağ içeren gıdalarda oksidatif açılamaya neden olabileceğinden kullanımını sakınmalıdır.

1.3. Gıdalarda Mikrobiyolojik Bozulma

Canlılarda (bitki, hayvan ve insanlar) normal olarak bulunan ve yaşamlarının bir parçası olan mikroorganizmalara “normal flora” denir. Bir gıdanın mikrobiyel florasi;

- Ham maddenin elde edilmesi
- Taşınması
- İşlenmesi
- Depolanması
- Pazarlanması işlemleri sırasında kolayca şekillenir.

Toprak, hava, su, bitki ve gıdaların işlenmesi sırasında kullanılan alet, ekipmanlar ve çalışanlar gıdaldaki mikroorganizma kaynaklarını oluşturur.
Gıdalarda bozulmaya neden olan mikroorganizmalar gıdaları besin ve enerji kaynağı olarak kullanır.

1.4. Bulaşma Kaynakları

Gıda kaynaklı hastalıkların önlenebilmesi ve gıdaların depo ömrülerinin uzatılması açısından bulaşma kaynaklarının bilinmesi önemlidir. Bu bilgiler doğrultusunda gerekli önlemler alınabilir.

- Mikroorganizmaların bulaşma kaynakları:
 - İnsan
 - Toprak
 - Su ve kanalizasyon
 - Hava
 - Hayvanlar
 - Bitkiler
 - Katkı maddeleri
 - Alet ve ekipmanlar

1.4.1. İnsan

Gıda işletmelerinde en önemli bulaşma kaynaklarından biridir. Gıda üretiminde çalışan kişilerin periyodik olarak sağlık kontrolünden geçirilmesi gerekmektedir.

Taşıyıcılar üç grupta incelenir:

- Nekahat devresinde taşıyıcı: İnsan enfeksiyon hastalık geçirdikten sonra hastalık etmeni mikroorganizmayı genellikle 10 hafta kadar taşımaya devam eder.
- Kronik taşıyıcı: Hastalık etmeni mikroorganizmayı belirti göstermeden süresiz olarak taşır.
- Temas nedeniyle taşıyıcı: İnsan patojen mikroorganizmayı enfekte kişi ile yakın temas sonucu alır ve kendisi hastalık belirtisi göstermeden mikroorganizmayı taşır.
Resim 1: Hasta ve hijyen kurallarına uymayan personel

Resim 1: Gıda işletmesinde tuvalet ve el yıkama alanı

Gıda sanıtasyonunda personel hijyenin en önemli yer tutar (Resim 1. 1). Personel hijyeninin en önemli noktası tuvalet alışkanlığınıserial. Çünkü birçok patojen, çevreye direkt veya endirekt olarak dışkı bulaşması yoluya yayılır.

Personel, hazırlık, işleme, ambalajlama ve taşıma evrelerinde gıdayı doğrudan bulaştırabilecek sayıda ve çeşitli mikroorganizma taşıyabilir. Özellikle eller, giysiler, saç, biyik, aksesuar gibi pek çok dış faktörün yanı sıra personelin nefesi, tükürtügü, varsa yaralarının her biri ayrı ayrı bulaş odağı oluşturur. Personelin dakikada 10 000 ile 100 000 adet dışkı bulaşında mikroorganizma yayabileceğini belirtiriz. Bu nedenle personel hijyenin ve eğitimi çok özel bir önem taşır.

Yapılan araştırmalar gıda işletmesinde çalışanların % 60’ının ellerini doğru şekilde yıkamadığı ve gıda aracılığı ile meydana gelen hastalıkların % 25-40’ını gıda işleme veya gıda servisinde çalışan kişilerden bulaşma sonucunda ortaya çıktığını göstermiştir.

İnsanın sebep olduğu en önemli bulaşma kaynaklarından biri de parazitlerdir.

Parazitler, yaşamlarını sürdürebilmek ve çocuklabilme için bir konakçiya ihtiyaç duyuran canlılardır. Bağırak, parazitler için vazgeçilebilecek bir mekandır. Çünkü bağırsakta
besinler henüz sindirilmek üzere ve parazit, bağırskaklar tarafından emilme üzere olarak bu hazır besini kendisi kullanmaya başlar. Tabii bu sıradı konak canlıya da zarar verir.

Bazı parazitler yalnızca insanda bulunurken bazıları da sadece hayvanlarda bulunur. Bazıları ise yaşam döngülerinin bir kısmını hayvanlarda bir kısmını da insanlarda geçirir.

Parazit bulaşması: Kirlenmiş toprak, su, gıda, parazitin bulunduğu hayvan, parazitli kişi, bu kişinin elbisesi ve yatağı ile eşyalarından olur.

Parazitler genel anlamda sömürücü, toksik, travmatik ve allerjik etkileriyle insan ve hayvan sağlığı olumsuz etkiler.

1.4.2. Toprak

Toprak birçok mikroorganizmanın doğal ortamıdır. Mikroorganizma sayısı toprak yüzeyinde daha yüksektir, derinlere indiğinde azalar. Çoğu mikroorganizma toprağın ilk 50 cm'lik yüzey kısmında bulunur. Toprağın yüzey kısmının organik maddece zengin olması bu kısmına mikroorganizma sayısının doğal olarak artmasına neden olur. Gübreli topraklardaki mikroorganizma sayısı daha yüksektir.

Toprakta yaşayan organizmaların tür ve sayısı bakımından fazla olması üreme yeteneklerine, ortaman asitlik derecesine ve rutubet oranına bağlıdır. Toprağın içerdığı nem oranı mikrobiyal aktiviteyi önemli derecede etkiler.

Toprak, sporlu bakterilerin en önemli kaynağıdır. 1g toprakta binlerce maya hücresi ve çok yüksek sayıda küf sporu bulunabilir.

Resim 1.3: Doğada ham madde için bir bulaşçı kaynağı olan arazi, toprak

1.4.3. Su ve Kanalizasyon
Su, gıdaların üretimi, hasadı veya işlenmesi sırasında kullanılır. Hangi amaçla kullanılsa kullanılsın (içme, temizlik) suda patojen mikroorganizmalar bulunmamalıdır.

Su, yalnızca kendi doğal florasını değil toprakta ve bitkilerde bulunan mikroorganizmaları, bulaşma olması durumunda da dışkı ve kanalizasyon sularında bulunan mikroorganizmaları da içerebilir.

Sularda pseudomanas, micrococcus, bacillus, clostridium, fekal streptecoccus, enterobacter, escherichia cinslerine ait bakteriler bulunabilir.

Resim 1.4: Gıda zincirinde enfeksiyon kaynağı olabilecek atık sular

Sularda bulunan patojen mikroorganizmalar, suyun içilmesi ile direkt olarak veya suların gıdaları bulaştırılması ve bulaşmış gıdaların tüketilmesiyle endirekt olarak insanla gecebilir. Kirli sulama suyu kullanıldığı sürece, gıda zincirinde enfeksiyon döngüsünün kırılamayacağı açıktır.

Sularda fekal kontaminasyon indikatörü olarak koliform grubu bakteriler aranır. Suda koliform bakteri bulunması genel bir bulaşma olduğunu gösterir.

1.4.4. Hava

Hava mikroorganizmaların yaşayıp çoğalacağı bir ortam değildir. Havada bulunan mikroorganizmalar genellikle toz, toprak ve bitki orijinlidir. Toprak ve bitkilerde bulunan mikroorganizmalar, rüzgârlarla havaya karşıtırılır. Mikroorganizmalar havada çoğalmaz, canlılıklarını bir süre korur. Havada bulunan küf ve bakteri sporları ve jetatif hücrelere oranla daha uzun süre canlı kalır.
Havadaki mikrobiyal yük, gıda işletmelerinin değişik alanlarında oldukça farklıdır. Temiz alanlarda havada çok az mikroorganizma bulunurken canlı hayvanların veya çiğ gıdaların işlendiği alanlarda mikrobiyal yük oldukça yüksektir.

Havadaki mikrobiyal yükü kontrol etmek için temiz alanlara giren hava bakteriyolojikfiltrelerden geçirilerek mikroorganizmalardan arındırılmalıdır. Bunun dışında işletme içindeki hava hareketi temiz alanlardan kirlenmekte olmalıdır.

İnsanlar; konuşma, aksırma ve öksürme sırasında mikroorganizmaları etrafına saçar. Solunum yolu enfeksiyonlarına neden olan mikroorganizmalar hava ile yayılır. Kapalı bir alandaki havanın mikrobiyal yükü insan sayısı, aktiviteleri ve havanın sirkülasyon hızı ile değişir.

1.4.5. Hayvanlar

Hayvanların derilerinde, solunum ve sindirim sistemlerinde bu ortamlara özgü doğal mikroflora bulunur. Et, kesimden itibaren özellikle toz, toprak ve dışkı orijinli mikroorganizmalarla bulaşmaya başlar.

Brucella, tuberculosis, listeria, salmonella, E.coli hayvansal gıdalar ile insanlara geçen patojen mikroorganizmalardır.

Çiftlik hayvanları bulaşmış yemlerle beslenerek veya diğer hayvan ve kuşların dışkıları ile temas ederek enfekte olur. Hayvanlar salmonellanın başlıca kaynağı olarak gösterilir. Enfekte olmuş karkas etler (kemikli sağır eti) ileme, taşıma ve satış aşamalarında diğer sağlıklı etlerin de kirlenmesine sebep olur.

Sağlıklı bir hayvandan sağılan süte sağdıç esnasında ellerdenden, hayvanın memesinden ve sağım kaplarından, mikrobiyal bulaşmalar olur. Çiğ süt florasında yaygın olarak staphylococcus, micrococcus ve corynebacterium türleri bulunur. Hastalıklı hayvanların sütlерinde ise salmonella, brucella ve listeria gibi patojen bakterilere rastlanır.

Kanatlarda yumurtanın kabuk yüzeyi yumurtlama sırasında ve hemen sonrasında dışkı ve toprak orijinli mikroorganizmalarla enfekte olur.

Böcekler, sinekler, kuşlar, haşere ve kemirciler mikroorganizmaların gıdaları bulaşmasında önemli rol oynar. Böcek ve kuşlar meyve ve sebzeleri mekanik olarak zarara uğratır, mikroorganizmalar iç kısımlara bulaşır ve bozulmaya yol açar.
1.4.6. Bitkiler

Bitkiler toprak, su, hava, gübre ve hayvan gibi değişik kaynaklardan gelen mikroorganizmalarla buluştur.

Değişik bitkilerin doğal florası farklıdır. Meyve ve çiçeklerin doğal florasında saccharomyces, hansenula, candida gibi mayalar bulunur. Bitkilerin florasında pseudomanas, alcaligines, flavobacterium, achromobacter ve micrococcus cinslerine ait bakterilerle fekal streptokoklar, koliform ve laktik asit bakterilerine sıkıla rastlanır.

Kanalizasyon karışmış sularla sulanan sebzelerde salmonella cinsi bakteriler ile vibrio cinsi bakteriler bulunabilir. Öğütülmüş buğday, mısır ürünleri ve pirinçte b.cereus ve c. perfringens gibi sporlu bakteriler bulunabilir.

1.4.7. Katkı Maddeleri

Katkı maddeleri gıdalarara az miktarda eklenmesine karşın bu gıdalar yüksek sayıda mikroorganizma buluşturabilir. İşlem görmüş gıdaların mikrobiyolojik kalitesi katıl maddelerinin mikrobiyolojik kalitesine bağlıdır.

Baharatlar bitkisel kaynaklı olmaları nedeniyle toprak, su, gübre ve hayvan kaynaklı çok sayıda mikroorganizma içerebilir.
Bazı gıdalara ilave edilen un, nişasta, jelatin ve şeker gibi maddelerde de yüksek sayida mikroorganizma bulunur.

Yine güneşe kurutulmuş tuzlar, tuzlanarak saklanan balıkların bozulmasına neden olur.

Katkı maddeleri, mikrobiyal yükleri nedeniyle gıdalarda muhafaza amacıyla kullanıldıkları zaman bile gıdaların bozulmasına neden olabilir.

İlave edildikleri gıdalarda bozulmalara ve mikrobiyal kontaminasyona neden olabilecek katkı maddeleri için kullanıldıkları gıda veya gıdanın işleme yöntemine bağlı olarak standartlar belirlenmiştir.

1.4.8. Alet ve Ekipmanlar

Gıda işletmelerinde temizliğin kolay ve etkili bir şekilde yapılabilmesi için ekipmanlar arasında ve ekipmanlarla, duvar ve taban arasında yeterli boşluk bulunmalıdır (Resim 4.7).

Alet ve ekipmanlar çalışma günü sonunda veya vardiya aralıklarında işletmenin temizleme programına uygun temizlenmeli ve dezenfekte edilmelidir.

Ekipmanlar yerleşim hataları nedeniyle da doğru şekilde temizlenip dezenfekte edilmediklerinde önemli kontaminasyon kaynağını oluşturur.

Genellikle üretim hattındaki ürünü bulasma büyük ölçüde ekipmanların yüzeyinden ve çalışan işçilerin ellerindeki mikrobiyai yükten kaynaklanır.

Resim 1.7: Hijyenik gıda üretim hatları

Ekipmanlarda ulaşılaman yerler, kırık ve çatlaklar olmamalıdır. İşçiler tarafından kolayca temizlenecek şekilde dizayn edilmelidir.
Çığ ve pişmiş gıdalar için kullanılan alet ve ekipmanlar ayrı olmalıdır. Çünkü çığ gıdada bulunan patojen veya bozulmaya neden olan mikroorganizmalar bulaşma sonucu gıdaya veya işlenmiş son ürünü ulaşır.

1.5. Enfeksiyon Tipi Gıda Zehirlenmeleri

Besinlerin taşıdığı bazı patojen mikroorganizmaların besinlerle vücuda girmesi ve orada çoğalarak vücuda zarar vermesi hâlinde ortaya çıkan hastalıklara enfeksiyon tipi gıda zehirlenmeleri denir.

1.5.1. Salmonella Gıda Enfeksiyonu

Salmonella cinsi bakterilerin birincil yaşam yeri insan, kuşlar, memeliler, sürüngenler ve böcekler gibi canlıların bağırsaklarıdır.

Şema 1.1: Salmonella bulaşmasında doğal döngü

1.5.1.1. Hastalığın Yayılmasında Gıda Maddelerinin Önemi

Gıdaların 70oC’de en az 10 dakika tutulması salmonellalari öldürür. Soğuga karşı çok dayanıklıdır. Buz içinde aylarca kalabilir.

Salmonella cinsi bakterilerin gıda maddeleri ile bulaşmasına ilk sırayı hayvansal ürünler alır. Örneğin; taze et kesim sırasında, kesimden sonraki işlemler veya taşıma sırasında bulaşır. Et üzerinde kolayca gelişir ve özellikle kıymada aşıri gelişme ile insanlarda hastalıklara yol açar.

Yumurtaların kırılması sırasında, özellikle yumurta akının kirli kabuk üzerinden temas ederek aktılması, bunlarla hazırlanan gıdaların bulaşma derecesini artırır.

Bulaşmalara yol açan hayvansal gıdalar arasında sucuk ve benzeri et ürünleri, balık ve balık ürünleri, süt ve süt ürünleri, bu arada sütle hazırlanan tatlılar, dondurma, kaymak, krema, tereyağı ve peynir salmonellaların gelişme oranını buldukları gıdalar olarak belirtilebilir.
Salmonellalar gıda maddelerinin görünüş, koku ve lezzetinde anlaşılabilir bir değişiklik yapmadıklarından fark edilemeden bulaşmış gıdalarla alınır.

Özellikle çiğ tüketilen meyve ve sebzelerle yaygın bir bulaşma olabilmektedir. Meyve ve sebzelerin tarımının yapıldığı alanlar insan fekal artıkları ve lağım suları ile suların veya kirilenmişse tehlike clear olarak görülemedi bulaşılarla alınır.

Mide bulantısı, kusma, şiddetli ishal, karın ağrısı ve hâlsizlik belirtileridir. Genellikle tedavi edildikten sonra 1–2 gün içinde iyileşme görülür.

1.5.2. Streptecoc Gıda Enfeksiyonu

Bu mikroorganizmalar insan ve hayvanların bağırsaklarında bulunur. Et ve tavuk kesim sırasında dışkı kaynaklı streptecoclara kirilir. Dışkı kaynaklı streptecoclar tuz oranı yüksek besinlerde de çoğalabilir.

Et, tavuk, kremalı pastalar en iyi kaynaklarıdır. Bu besinlerin oda sıcaklığında bekletilmesi hastalığa neden olabilir.

Bu tür enfeksiyonalara meydana vermemek için;

- Gıda ile uğraşan kişiler temizlik kurallarına uymalı,
- Gıdaların hazırlanması ve saklanmasında zaman- sıcaklık ilkesine uymalı,
- Besinler hızla soğutulmalıdır.

Hastalığın belirtileri; mide bulantısı, kusma, karın ağrısı ve ishal şeklinde görülür.

1.6. Gıda Kaynaklı Bakteriyel Toksin (İntoksikasyon) Tipi Zehirlenmeler

Bakteriye başın zehirlenmesi, besinlere bulaşmış bazı bakteriler tarafından üretilen toksik maddenin sindirim sistemine girmesi ile olur. Bunun sonucunda kişide sindirim ve sinir sistemi hastalıkları görülür. Bu hastalıklar geçici olduğu hâlde bazen ölümle sonuçlanabilir.

Toksin içeren gıda maddelerinin lezzet, aroma ve görünümüne belirgin değişiklikler olmadığından duyusal olarak belirilenleri zordur.

Bakterilerin salgıladıkları toksinlerin yol açtığı besin zehirlenmeleri iki gruba ayrılır:

- Bunlardan biri staphyloccocus aureus bakterisinin salgıladığı enterotoksinin neden olduğu staphyloccocus besin zehirlenmesi,
Diğer ise clostridium türlerinin salgıladiği ekzotoksinlerden (diş zehir) meydana gelen zehirlenmelerdir. Bakteri toksini besin içinde salgılar ve bu besinin alınmasıyla vücutta zehirlenme olur.

1.6.1. Staphylococcus Kaynaklı Gıda Zehirlenmesi

Staphylococcus cinsi bakterilerle bulaşma kaynağı, gıdaların hazırlanması ve işlenmesinde çalışan kişiler oluşturur. Bulaşma temasla gerçekleşir.

Staphylococcus aureus zehirlenmesinin ortaya çıkışı süresi 30 dakika ile 8 saat arasında değişmekle birlikte genellikle bulaşma olmuş gıdanın tüketiminden 1–6 saat sonra belirtiler görülebilir.

Bulantu, kusma, karın ağrısı ve ishal önemli belirtileridir. Hasta 1–2 gün içinde iyileşir. Ölüm çok enderdir.

Staphylococcus aureus gıda zehirlenmesine kaynak oluşturan gıdalar; kırmızı et ve ürünleri, tavuk eti, özellikle salam, hazırlanmış et, dil, sogüş etleri, izgara etler ve bu ürünlerle hazırlanan salatalar.

Özellikle hazırlanması sırasında çok fazla el ile temas edilen ve tüketimden çok önce hazırlanarak oda sıcaklığında bekletilen etli, salamlı, peynirli, tavuklu sandviçler, patates salatası, kremalı pudingler, pastalar riskli gıda gruplarını oluşturur (Resim 1. 8).

Resim 1. 8: Uygun koşullarda hazırlanmayanca risk oluşturacak gıdalar

Staphylococcus aureus gıda zehirlenmesinin en önemli kaynağı doğrudan veya dolaylı yollardan insanlardır. Sağlıklı kişiler de bu bakterileri ağız, burun ve boğazlarında taşır. Buna göre gerekli hijyenik önlemleri almak gerekir. Gıda hazırlanma işiyle uğraşan kişilerin dikkatsizliği sonucu bulaşma olur. Bunlar;

- Besinlerin üzerine hapşırmak
- Ağız, burun karıştırmak
- Mendil kullanıktan sonra, ara, kapı tokmağı elledikten sonra ve tuvalet ihtiyacı sonrası ellerin gerektiği gibi yıkanmaması
Şema 1.2: Stafilokok besin zehirlenmesi kaynağı ve yolları

Besinlerde zararlı bakterileri üremesini etkileyen diğer faktör de besinlerin hazırlanışı ve depolanışı ortamı ısısidır.

Stafilokok bakterileri 5 – 45 º C dereceleri arasında coğalar.

- Besinler hemen servis edilecektse sıcak ortamda (60 º C) bekletilmelidir.
- Soğuk besinleri ise soğuk ortamda (4 º C altında) depolamalıdır.
- Pişmiş besinler oda sıcaklığında bekletilmemeli hızla soğutularak soğutucuya kaldırılmalıdır.

1.6.2. Clostridium Botulinum Kaynaklı Gıda Zehirlenmesi

Botulismus, clostridium botulinum toksininin neden olduğu bir zehirlenmedir. C.botulinum toksini diğer bakteri toksinlerinden daha fazla öldürücüdür.

Botulismus zehirlenmesi işlenmiş gıdalarında ender görülür. Yeterli derecede ısıtılmayan konservelerde, özellikle evlerde yapılan konservelerde ve büyük et parçaları ile hazırlanılan çiğ et ürünlerinde clostridium botulinum bulunabilir.

Clostridium botulinum bulunan gıdalarında gözle görülür bir değişiklik gelmediği için tüketiciler açısından büyük tehlike oluşturur.

Bu toksin daha çok düşük asitli ev konservelerinde oluşur (Resim 1. 8). En fazla düşük asitli sebze konservelerinde (fasulye, mısır, kuskonmaz, ispanak), balık ve et ürünlerinde, füme etlerde ve balıklıarda ortaya çıkar. Bu nedenle özellikle evlerde 100 ºC’nin altında hazırlanan konservelerde dikkatli olmak gerekir.

Bu zehirlenmeden korunmak için:

- Besinlerin hazırlanması ve muhafazasında genel hijyen kurallarına dikkat edilmelidir.
- Konserv üretiminde yeterli ısı işlem uygulanmalı ve inkübasyon testleri mutlaka yapılmalıdır.
- Kapakları şişkin (bombaj), paslı, zedelenmiş, sıçan yapan ve açıldığında köpüklü görünümü olan, rengi ve kokusu bozuk konserve tüketilmemelidir.

1.6.3. Clostridium Perfringens Kaynaklı Gıda Zehirlenmesi

Bulaşık gıdanın tüketiminden 6 – 24 saat sonra karında kramplar, sulu ıslah, mide bulantısı ve bazen kusmalar görülür. Çok az da olsa ateş, titreme ve baş ağrılara da rastlanır. Genellikle bu belirtiler kısa sürede kaybolur ve daha en geç 1–2 gün içinde yeniden sağlığa kavuşur.

Rahatsızlık daha çok fazla miktarlarda hazırlanır, oda sıcaklığında saatlerce bekletilen veya avuç soğutulan kırmızı et ve kumes hayvanlarının etlerinden kaynaklanır. Yemek sosları, sebzeli ve sulu et yemekleri, köfteler ve etli börekler de mikroorganizmanın sıktığı yemeklerdir. Besin hazırlanma ortamının, kullanılan araç-gerecin ve çalışan personelin hijyen kurallarına uymaması mikroorganizmaların üremesini kolaylaştırmır.

Zehirlenmeyi önlemek için gıdalar pişirilme sonrasında hemen tüketilmeli, eğer tüketilemeyecekse 60 oC veya daha yüksek sıcaklıkta tutulmalı, ya da 7oC’de soğutulmalıdır.
<table>
<thead>
<tr>
<th>Hastalık etkeni ve hastalık adı</th>
<th>En sık rastlanan gıda maddesi</th>
<th>Kuluçka süresi</th>
<th>Belirtiler</th>
<th>Etkin zehir ve özellikleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. botulinum</td>
<td>4,5 pH üzerinde konserve, anaerob koşullarda bulunan et ve sucuklar, balık ve balık ürünleri</td>
<td>12-16 saat</td>
<td>Baş dönmesi, konuşma ve görmede bozuluk, solunum felci ile ölüm</td>
<td>Ekzotoksin sıcaklıklık etkisizleşir</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>Süt ve ürünleri, dondurma, kremalı pastalar, et ve sucuk, balık ve salata</td>
<td>3-6 saat</td>
<td>Mide bulantısı, kusma ve karın ağrısı, ishal</td>
<td>Ekzotoksin</td>
</tr>
<tr>
<td>Salmonella enteritidis</td>
<td>Taze et, kıyma, kanatlı eti, yumurta, fekal bulasılmış gidalar, çığ süt ürünleri</td>
<td>6-8 saat</td>
<td>İshal, karın ağrısı, hâlsizlik, ateş</td>
<td>Ekzotoksin</td>
</tr>
<tr>
<td>Streptecoccus faecalis</td>
<td>Et, kanatlı eti, süt, peynir, kremalı pasta</td>
<td>4-12 saat</td>
<td>Mide bulantısı, kusma, ishal</td>
<td>Enteretoksin</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>Ön pişirme yapılmış ve iyi soğutulamamış gidalar, sucuk, et ve kanatlı eti</td>
<td>10-12 saat</td>
<td>Karn ağrısı, kusma, mide bulantısı</td>
<td>Enteretoksin</td>
</tr>
</tbody>
</table>

Tablo 1.4: Önemi ve tehlikeli bakteriyolojik gıda rahatsızlıklarları

1.6.4. Küf Kaynaklı Gıda Zehirlenmeleri

Küf kaynaklı gıda zehirlenmeleri denildiğinde küf olarak tanımlanmış ve hif veya misel oluşumuya gelişip gelişmeleri çıplak göze de izlenebilen mikroorganizmaların neden olduğu zehirlenmeler akla gelir. Bu canlıların oluşturduğu toksik etkili maddeler mikotoksin olarak tanımlanır.

Yapısı bakımdan endo- ve ekzotoksinler olarak iki ayrılı şekilde bulunur.

Endotoksin metabolik etkinliği gösteren mantar hif içinde depolanır ve hücre dışına salınmaz.

Ekzotoksin kolayca gıda maddesine salınır.

Doğal olarak bu durumda endotoksin rahatsızlıklarının olması için gıdayla birlikte küf hif ve hücrelerinin de alınması gerekirken ekzotoksin gıda maddesinde bulunan hifler uzaklaştırılrsa bile rahatsızlık ortaya çıkar.

Mikotoksin oluşturucu mikroorganizmalardan en önemlileri aspergillus, penicillum ve fusarium türleridir.
Mikotoksinler hayvansal gıdalarla da buluşmakla birlikte en riskli gıdalar arasında bitkisel ürünler ve bunlar içinde tahl ve tahl ürünleri, yağlı tohumlar, çerezler ve baharatlar ilk sırayı almaktadır (Resim 1.9). Hayvansal ürünlerde daha çok bitkisel ürünler ve yemden bulaşır.

Resim 1.9: Toksinler açısadın risk oluşturabilecek, açıkta satılan, uygun koşullarda muhafaza edilmeyen kurutulmuş ürünler

Mikotoksinler içinde insan sağlığı yönünden en tehlikelisi ve üzerinde durulmuş *a.flavus*’un ürettiği **aflatoksindir**.

Aflatoksin oluşumunda önemli etkenler:

- Gıdaya bulaşmış olan mantar türü
- Gıda Maddesinin su aktivitesi
- Gıda Maddesinin bileşimi
- Nem, oksijen miktarı ve sıcaklık gibi çevre koşulları

Gıda maddesinin türü ve durumu yanında bileşimi de küf gelişimini, dolayısıyla aflatoksin oluşumunu etkiler.

- **Aflatoksin riskli gıdalar:**
 - Yer fistiği, diğer fistikler ve bunlardan üretilen ürünler
 - Mısır
 - Yağlı tohumlar
 - Hububat ürünleri
 - Kuru meyveler (kuru incir)
 - Kırmızı biber
 - Patates

Gıdalarında fazla aflatoksin bulunan bölgelerde yapılan araştırmalar sıroz ve karaciğer kanserinin arttığını göstermiştir. Bunun dışında mide kanserine de neden olur.

Aflatoksin kontrolünde özellikle yağlı tohumlar başta olmak üzere bitkisel ürünlerin a. flavus ile başa çıkmasına önlenmesi, bu ürünlerin uygun koşullarda hasat edilerek uygun koşullarda depolanması önemlidir.

Herhangi bir gıdadan küfli kısımdan alınmasıyla oluşan toksin uzaklaştırılamayabilir. Aflatoksin iç dokulara işleyerek küfli kısmın atılrsa bile gıda yine de aflatoksin içerebilmektedir.

➢ **Hazır besiyeri ve özellikleri**

Besiyerleri, içinde mikroorganizma gelişmesine elverişli koşulları sağlayan ortamlardır.

Kullanış amacına göre genel ve özel olarak iki gruba ayrılır.

- **Genel besiyerleri** çeşitli mikroorganizmaların üremesine izin veren besiyerleridir.
- **Özel besiyerleri** ise sadece bir grup veya bir cins mikroorganizmaların üremesine izin veren besiyerleridir.

Besiyerleri çeşitli ticari firmalar tarafından hazırlanıp piyasaya sunulmaktadır (Resim 1.10.). Bu tip besiyerlerinin ambalaji üzerinde nasıl kullanılacağı yazılır.

![Resim 1.10: Tek kullanımlık kağıt hazır besiyerleri](resim)

Bazı besiyerleri ise tablet hâlinde pazarlanmaktadır. Bu tabletlerden her biri belirli bir hacim distile su içinde eritildiğinde besiyeri hazırlanmış olur.

Mikrobiyoloji laboratuvarlarında distile su kullanmalıdır. Musluk suyu kimyasal bileşim bakımından stabil olmadığını gibi ülkemizde suların yüksek düzeyde klorlanması da
musluk suyu kullanımını engellemektedir. Distile su özel düzeneklerde damıtılmış suyu ifade eder.

- **İnkübatör ve inkübasyon**

Mikrobiyoloji laboratuvarında inkübatörler, mikroorganizmaların gelişmesi için uygun sıcaklıklardaki ortamı oluşturmak için kullanılmaktadır (Resim 1.11).

Kullanım amacına göre farklı sıcaklıklarda çalışan (20–28°C, 37°C, 55°C vb.), farklı büyüklüklerde ve çeşitli özelliklere inkübatörler laboratuvarında önemli araçların başında gelir. İnkübatörde sıcaklık değişimi ±1°C olmalıdır. İnkübatörün sıcaklık değişimi sık sık minimum / maksimum termometre ile kontrol edilmelidir.

İnkübatörün kullanımda dikkat edilmeli noktalar:
- İnkübatöre direkt güneş ışığı gelmesi engellenmelidir.
- Asıri dolumdan kaçınmalıdır. Yerleştirme hava sirkülasyonu sağlayacak şekilde boşluklar bırakılmalıdır.
- İnkübatör kapağı sık sık açıklamalıdır.
- Düzenli olarak temizlik ve dezenfeksiyonu yapılmalıdır.

![Resim 1.11: İnkübatör](image-url)

İnkübasyon; ekim yapılmış besiyerinin inkübatörde belirli sıcaklık derecesinde ve belirli süre tutulması işlemidir. Aranacak / sayılacak mikroorganizmaya göre inkübasyonda sıcaklık koşulları sağlanmalıdır.

Genel olarak;
- Psikrofil bakteriler 7°C,
- Mezofil aerob bakteriler, mayalar ve küfler 28 – 30°C,
- Enterobacterler, clostridium, staphylococcus gibi bakteriler 35–37°C,
- Termofil bakteriler 45 °C,

İnkübasyon atmosferi olarak aeroblar ve fakültatif anaeroblar için normal atmosfer koşulları, anaeroblar için inkübasyon ortamından oksijen uzaklaştırılmıştır.
Ortamdaki mikroorganizma yükünü gözleyiniz.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
</table>
| 3 adet hazır besiyerini alınız. | ➢ Laboratuvar kıyafetlerini giyiniz.
➢ Ellerini her çalışma öncesinde yıkayın ve dezenfekte ediniz.
➢ Gerekli koruyucu malzemelerini giyiniz.
➢ Çalışma ortamını temizleyiniz.
➢ Kullanacağımız araç ve gereçleri temizleyiniz.
➢ Gerekli güvenlik önlemlerini alınız.
➢ Uygun araç gereç ve ekipmanı seçiniz. |
| ➢ 1.besiyerine elle basıp hemen kapatarak üzerine “elden ekim” yazınız. | ➢ Dikkatli çalışınız. |
| ➢ 2.besiyerini ortamda ağız açık olarak 30 dakika bekletiniz ve kapatınız. Üzerine “havadan ekim” yazınız. | ➢ Zamanınızı iyi kullanınız.
➢ Aseptik çalışınız |
| ➢ 3.besiyerine pipet ile 0,5 ml su örneği alarak kapatınız. Üzerine “sudan ekim” yazınız. | ➢ Çalışmalarınız sırasında temiz ve özenli olunuz.
➢ Su örneğini petriye aldıktan sonra düz bir yüzey üzerinde üç kez sekiz hareketi yaptırarak örnek ile besiyerinin homojen karışmasını sağlayıniz.
➢ Kapağını kapattığınız petri kutusunu, besiyeri katlaşıcısına kadar bekletmeyi unutmayınız. |
|➢ Tüm besiyerlerini inkübatörde 37ºC'de 48 saat tutunuz. | ➢ İnkübatörü kullanım kurallarına uymaya özen gösteriniz.
➢ Besiyerlerini inkübatöre ters yerleştiriniz.
➢ Sıcaklık ve süreyi kontrol etmeyi unutmayın. |
|---|---|
|➢ İnkübasyon sonunda besiyerlerinde üreme olup olmadığını inceleyiniz. | ➢ Kontaminasyon kaynaklarını gözlemleyiniz.
➢ Gözlemınızı dikkatli yapınız.
➢ İnkübasyon bitiminde üreme olmuş petrileri seçerek sayınız.
➢ Mikroorganizmaları incelerken besiyerlerinin kapalı olması dikkat ediniz.
➢ Saydığınız petrileri hemen not ediniz.
➢ Dikkatli olunuz. |
|➢ Mikroorganizmaların bulaş kaynaklarını hatırlayıp yapılan uygulamayla bağlantı kurunuz. | ➢ Sonuçları rapor hâline getirerek sınıfta arkadaşlarınızla tartışınız.
➢ Analiz sonrasında kullandığımız tüm malzemeyi otoklavda sterilize ediniz, yıkayınız/atınız.
➢ Laboratuvar önliğinizi çıkarp aşınız.
➢ Ellerini her çalışma sonrasında yıkayınız.
➢ Koruyucu malzemelerinizi çıkarıp çope atınız.
➢ Çalışma ortamını temizleyiniz.
➢ Kullanılan araç ve gereçleri temizleyiniz.
➢ Laboratuvar son kontrollerinizi yapınız.
➢ Temizlik kurallarına uymaya özen gösteriniz. |
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız becerileri “Evet” ve “Hayır” kutucuklarına (X) işaretli koyarak kontrol ediniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçüleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Çalışmaya başlamadan önce ellerinizi uygun temizlik maddesi ile yıkayıp kuruladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Laboratuvar kıyafetlerinizi giydiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Gerekli koruyucu malzemelerinizi giydiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Çalışma ortamını temizlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Kullanacağınız araç ve gereçleri temizlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Gerekli güvenlik önlemlerini aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Uygun araç gereç ve ekipmanı seçtiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. 3 adet hazır besiyerini aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. 1.besiyerine elle basarak hemen kapatarak üzerine “elden ekim” yazdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. 2.besiyerini ortamda ağzı açık olarak 30 dakika bekletip ve kapatarak üzerine “havadan ekim” yazdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. 3.besiyerine pipet ile 0,5 ml su örneği alarak kapatıp üzerine “sudan ekim” yazdınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Tüm besiyerlerini inkübatörde 37ºC’de 48 saat tuttunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. İnkübasyon sonunda besiyerlerinde üreme olup olmadığını incelediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Mikroorganizmaların bulaşı kaynaklarını hatırlayip yapılan uygulamayla bağlantı kurduğunuz mu?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Sonuçları rapor hâline getirerek sınıfta arkadaşlarınızla tartışınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Çalışma ortamını, kullanılan araç ve gereçleri temizlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Laboratuvar son kontrollerinizi yaptıınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

ÖLÇME VE DEĞERLENDİRME

Aşağıdaki sorular dikkatlice okuyunuz ve doğru seçeneği işaretleyiniz.

1. İnsanlarda gıda zehirlenmesi ve enfeksiyonlara neden olan mikroorganizmalar aşağıdakilerden hangisidir?
 A) Saprofit mikroorganizmalar
 B) Yararlı mikroorganizmalar
 C) Patojen mikroorganizmalar
 D) Zararlı mikroorganizmalar

2. Gıdalarda bozulma nedenleri aşağıdakilerden hangisidir?
 A) Bakterilerin, aktivitesi ve çoğalması
 B) Çeşitli kimyasal reaksiyonlar
 C) Gıdaların yapısında doğal olarak bulunan enzimlerin aktivitesi
 D) Hepsisi

1. Şekerler
2. Vitaminler
3. Aminoasitler.
4. Yağ asitleri
5. Alkoller
6. Mineraler

3. Gıda kaynaklı mikroorganizmalar enerji kaynağı olarak yukarıdakilerden hangisini kullanır?
 A) 1,3,4 ve 5
 B) 1,2,4 ve 6
 C) 2,4,5 ve 6
 D) 3,5 ve 6

4. Mikroorganizmaların gıdalarda gelişmesi aşağıdakilerden hangisine bağlı olarak değişmemektedir?
 A) Gıdanın sahip olduğu karakteristik özelliklere
 B) Gıdada bulunan mikroorganizmalar arası etkileşime
 C) Gıdanın içinde bulunduğu çevre koşullarına
 D) Gıdanın protein içeriğine

5. Mikroorganizmaların büyük kısmı hangi pH aralığında gelişmektedir?
 A) pH 4,6–5,4
 B) pH 6,6–7,5
 C) pH 5,0–5,7
 D) pH 5,6–6,4
6. Taze ve işlem görmemiş meyve, sebze, et, tavuk ve balık gibi gıdaların su aktivitesi aşağıdaki kilerden hangisidir?
 A) 0,98–0,99
 B) 0,78–0,80
 C) 0,88–0,89
 D) 0,68–0,79

7. Mikroorganizmalarının gıdaya girişini ve buna bağlı olarak da bozulmasını engelleyen doğal koruyucu biyolojik yapılar aşağıdaki kilerden hangisidir? **değildir?**
 A) Sebze ve meyvelerdeki kabuk
 B) Gıda ambalajları
 C) Fındık ve bademın kalın dış kabuğu
 D) Yumurtanın kabuğu

8. Bir mikroorganizmanın gelişebilğini en düşük ve en yüksek sıcaklık aşağıdaki kilerden hangisidir?
 A) 14ºC ve 70ºC
 B) 24ºC ve 80ºC
 C) 34ºC ve 90ºC
 D) 34ºC ve 100ºC

9. Streptecoc gıda enfeksiyonuna meydan vermemek için aşağıdaki kilerden hangisi yapılmamalıdır?
 A) Gıda ile uğraşan kişiler temizlik kurallarına uymalıdır.
 B) Gıdaların hazırlanması ve saklanmasında zaman- sıcaklık ilkesine uyulmalıdır.
 C) Gıdalar pişirme sonrasında oda sıcaklığında en az 3 saat soğutulmalıdır.
 D) Kullanılan alet ve ekipmanların temizliğine dikkat etmelidir.

Aşağıda verilen cümlelerdeki boşlukları tabloda verilen kelimelerden uygun olarak doldurunuz.

12. Koruyucu biyolojik yapılarında en küçük bir çatlaq, berelenme veya kırık oluşması ya da yapıdaki bütünliğin bozulması mikroorganizmaların geçişine ve böylece bozulmalara neden olacaktır.

13. Ortam sıcaklığı arttıkça bağıl nem Ortam sıcaklığı azaldığında ise bağıl nem doğal olarak

16. Sularda fekal kontaminasyon indikatörü olarak gruba bakteriler aranır.

17. Gıdaların 70oC’ta en az 10 dakika tutulması ... öldürüür.

18. Botulismus, ... toksininin neden olduğu bir zehirlenmedir.

19. Clostridium perfringens kaynaklı gıda zehirlenmesini önlemek için gıdalar pişirilme sonrasında hemen tüketilemeyecekse ... veya daha yüksek sıcaklıkta tutulmalıdır.

<table>
<thead>
<tr>
<th>A. 40°C</th>
<th>D. C.botulinum</th>
<th>G. toksin</th>
<th>İ. koliform</th>
<th>L. mikotoksin</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. portör</td>
<td>E. oksijen</td>
<td>H. artar/azalır</td>
<td>J. iç dokulara</td>
<td>M. 60°C</td>
</tr>
<tr>
<td>C. azalır/artar</td>
<td>F. karbondioksit</td>
<td>I. antimikrobiyal</td>
<td>K. Salmonella</td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

2. GİDALARDA MİKROBİYAL FAALİYETLERİ KONTROL ALTINA ALMA

2.1. Gıdalarda Mikrobiyal Faaliyetler

Gıdalarda mikrobiyal faaliyetleri kontrol altına almadan **amaç**: gıdalarda mikrobiyolojik bozulmaları geçiktirerek veya tamamen engelleerek gıdalardan dayanıklılığını arttırmak, gıdalara insanlara geçen hastalıkları önlemektir.

Mikroorganizmaların kontrol altına alınmasına dört temel ilke uygulanmaktadır. Bunlar:

- Kontaminasyonu önlemek
- Mikroorganizmaları uzaklaştırarak
- Mikrobiyal gelişmeyi inhibe etmek
- Mikroorganizmaları öldürmek

Bu ilkelerden yola çıkılarak çeşitli gıda muhafaza yöntemleri geliştirilmiştir.

2.2. Kontaminasyonun Önlenmesi

Günümüzde mikrobiyal kontaminasyonun önlenmesi daha fazla önem kazanmaktadır. Potansiyel mikrobiyal bulaşma kaynakları kontrol altına alınarak bu noktalardan kaynaklanabilecek bulaşmalar en alt düzeyeye indirilebilir.
Gıdalarımızda bulunan mikroorganizmaların sayısı kadar cinsi de önemlidir. Gıdaldaki mikrobiyal çeşitlilik; bozulmaya neden olan mikroorganizmaları, patojen mikroorganizmaları, fermantasyonda rol oynayan yanlışlık mikroorganizmaları içerir.

Gıdaldaki toplam mikroorganizma sayısı ne kadar düşük olursa bu mikroorganizmaları kontrol altına almak veya yok etmek de o kadar kolay olur.

Mikrobiyolojik yüksekMICROBES ve ekipman, kritik kontrollenliğin önemlidir. Gıdadır. Mikroorganizmalarla döndürmek için, insan, su, alet neden olan mikroorganizmaları bulutsaşken de polipları, ham maddeleri ve ambalaj materyalinden de bulaşma gerçekleştirebilir. Örnek: çift süt, çift et vb.

Mikroorganizmalar doğada yaygın olarak bulunur. Mikroorganizmaların gidalarla işlenmişye başlamadan önce ve üretim sırasında bulaşmalarını tamamen önlemek bazı özel durumlar dışında imkansızdır.

- Ham maddelere çevreden hava, toz, toprak, su ve gübre kaynaklı mikroorganizmalar bulaşır.
- Ayrıca üretim sırasında insan, su, alet ve ekipman, katkı maddeleri ve ambalaj materyalinden de bulaşma gerçekleşir.

Gıdalarına mikrobiyal bulaşmaların düzeyi bulaşmaya engel olmak amacıyla alınan sanitasyon önlemlerine bağlıdır.

Mikroorganizmaları kontrol altında alarak sağlıklı gıda üretmek yalnızca gıdanın işlenmesi aşamasında uygulanmış kontrol ile sağlanmaz. Besin değeri yüksek ve sağlıklı gıda üretmek amacıyla ham maddeden tütüncülere ulaşana kadar her aşamada (ham madde üretimi, depolama, taşınma, gıda işleme, toptan ve perakende satış, hazırlanma ve servis) mikrobiyal bulaşma ve gelişmeyi önlemek için gereklı olan her türlü önlem alınmalıdır.

Enfeksiyon ve zehirlenme olaylarının yalnızca küçük bir bölümü gıda işleme hatalarından kaynaklanmaktadır. Bu doğrultuda gıda güvenliği açısından tütüncülere daha ciddi biçimde korumayı hedef alan yasalar oluşturulmuş, gıda üretken firmalara işletme koşullarını geliştirmek ve iyileştirmek yolunda zorunluluklar getirilmiştir.

Bunun sonucu olarak GMP (Doğru Üretim Uygulaması), HACCP (Tehlike Analizleri ve Kritik Kontrol Noktaları) ve benzeri sistemleri gıda ileşen tüm sektörün kullanması yasalarca düzenlenmiştir.

Kontaminasyonu önlenmesinde;
- Sağlıklı ve temiz personelin çalıştırılması,
- İyi bir ön işleme,
- Gıda işletmelerinin kuruluşu aşamasında hijyenik teknik şartların oluşturulması,
Kaliteli ham madde ve katkı maddelerinin kullanılması,

İşleme, depolama ve dağıtımında sanitasyon kurallarına etkin şekilde uygulaması,

Kontaminasyon kaynaklarının iyi bir şekilde tespit edilip önlemlerin alınması,

İşletmelerde temizlik ve dezenfeksiyonun etkin şekilde gerçekleştirilmesi,

Uygun ekipmanların seçimi ve dizaynı,

Haşere ve kemirgenlerle mücadele gibi uygulamalar önem taşımaktadır.
Sanitasyon kurallarını uygulayarak kontaminasyonu önleyiniz.

<table>
<thead>
<tr>
<th>İşlem Basamakları</th>
<th>Öneriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çalışmaya başlamadan önce ve sonra ellernizi yıkayınız.</td>
<td>Ellernizi uygun temizlik maddesi ile yıkayıp kurulayınız.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Çalıșırken koruyucu malzeme kullanınız.</td>
<td>İş önlüğünüüz giyiniz.</td>
</tr>
<tr>
<td></td>
<td>Bone ve maske takınız.</td>
</tr>
<tr>
<td></td>
<td>Steril eldiven giyiniz.</td>
</tr>
<tr>
<td>Çalışma alanı, kullanacağınız araç gereci, ekipman temizleyiniz ve dezenfekte ediniz.</td>
<td></td>
</tr>
<tr>
<td>Kirlenmiş koruyucu malzemeleri değiştiriniz.</td>
<td></td>
</tr>
<tr>
<td>Dezenfektanlı küvetleri kullanınız.</td>
<td></td>
</tr>
<tr>
<td>Kişisel temizlik kurallarını yerine getiriniz.</td>
<td></td>
</tr>
<tr>
<td>Daha önce öğrendiğiniz kişisel temizlik kurallarını etkin bir şekilde uygulayınız.</td>
<td></td>
</tr>
<tr>
<td>Personel sorumluluklarını yerine getiriniz.</td>
<td></td>
</tr>
</tbody>
</table>
KONTROL LİSTESİ

Bu faaliyet kapsamında aşağıda listelenen davranışlardan kazandığınız becerileri “Evet” ve “Hayır” kutucuklarına (X) işareti koyarak kontrol ediniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçüleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Çalışmaya başlamadan önce ellerinizi uygun temizlik maddesi ile yıkayıp kuruldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. İş önluğu giyiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Bone ve maske takınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Steril eldiven giyiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Çalışma ortamını hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Gerekli güvenlik önlemlerini aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Kullandığınız araç gereçleri, makine ve ekipmanları temizleyip dezenfekte ettiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Kirlenmiş koruyucu malzemeleri değiştirdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dezenfektanlı kütvetleri kullanınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Kişisel temizlik kurallarını yerine getirdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Personel sorumluluklarını yerine getirdiniz mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Dikkatli ve titiz çalışınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Zamanınız iyi kullanınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Çalışmalarınız sırasında sanitasyon kurallarına uymaya özen gösterdiniz mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

Aşağıda verilen cümlelerdeki boşlukları tabloda verilen kelimelerden uygun olarak doldurunuz.

1. Gıdaldaki toplam mikroorganizma sayısı yükseldikçe gidada mikroorganizma bulunma olasılığı artar.
2. Mikrobiyolojik yük düşük gidalar daha raf ömrüne sahiptir.
4. ve olaylarının küçük bir bölümü yalnızca gıda işleme hatalarından kaynaklanmaktadır.
5. Günümüzde / önlenmesi, gıda üretiminde daha fazla önem kazanmaktadır.

<table>
<thead>
<tr>
<th>A. kısa</th>
<th>C. patojen</th>
<th>E. duyusal / enzimatik</th>
<th>G. enfeksiyon / zehirlenme</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. mikrobiyal / kontaminasyonun</td>
<td>D. uzun</td>
<td>F. mikrobiyal / sanitasyon</td>
<td>H. kimyasal / fiziksel</td>
</tr>
</tbody>
</table>

DEĞERLENDİRME

MODÜL DEĞERLENDİRME

- Turşu yapmak istiyorsunuz. Sanitasyon kurallarını uygulayarak kontaminasyonu önlemek için gerekli hazırlıkları yapınız.

DEĞERLENDİRME ÖLÇEĞİ

Bu faaliyet kapsamında aşağıdaki davranışlardan kazandığımız becerileri “Evet” ve “Hayır” kutucuklarına (X) işaretli koyarak kontrol ediniz.

<table>
<thead>
<tr>
<th>Değerlendirme Ölçütleri</th>
<th>Evet</th>
<th>Hayır</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Çalışmaya başlamadan önce ellerinizi uygun temizlik maddesi ile yıkayip kuruladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. İş önlüğü giyiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Bone ve maske takınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Steril eldiven giyiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Çalışma ortamını hazırladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Diş etkenlerden dolayı turşu malzemelerinin kontamine (bulaşma) olmaması için gerekli güvenlik önlemlerini aldınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Uygun araç gereç ve ekipmanı seçtiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Temizlik maddesi ve uygun dezenfektan seçtiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Çalışma ortamı, araç gereç ve ekipmanınızı temizlediniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Dezenfekte ettiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Kirli önlüğünüzü değiştirdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Kirli bone ve maskenizi değiştirdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Kirli eldivenlerinizi değiştirdiniz mi?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Daha önce öğrendiğiniz kişisel temizlik kurallarını etkin bir şekilde uyguladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Daha önce öğrendiğiniz personel hijyeni kurallarını etkin bir şekilde uyguladınız mı?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Zamanınızı iyi kullanınız mı?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
17. Çalışmalarınız sırasında sanıtasyon kurallarına uymaya özen gösterdiniz mi?

18. Mikroorganizmaların bulaşı kaynaklarını hatırlayıp yapılan uygulamayla bağlantı kurdunuz mu?

DEĞERLENDİRME

ÖĞRENME FAALİYETİ–1’İN CEVAP ANAHTARI

<table>
<thead>
<tr>
<th>Sayı</th>
<th>Cevap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
</tr>
<tr>
<td>11</td>
<td>İ</td>
</tr>
<tr>
<td>12</td>
<td>J</td>
</tr>
<tr>
<td>13</td>
<td>H</td>
</tr>
<tr>
<td>14</td>
<td>L</td>
</tr>
<tr>
<td>15</td>
<td>B</td>
</tr>
<tr>
<td>16</td>
<td>İ</td>
</tr>
<tr>
<td>17</td>
<td>K</td>
</tr>
<tr>
<td>18</td>
<td>D</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
</tr>
</tbody>
</table>

ÖĞRENME FAALİYETİ–2’NİN CEVAP ANAHTARI

<table>
<thead>
<tr>
<th>Sayı</th>
<th>Cevap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
</tr>
</tbody>
</table>
KAYNAKÇA

- www.kkgm.gov.tr.
- www.food.itu.edu.tr.